특정한 주제에 대해 빨리 알아보고 싶으세요?
여기 300개가 넘는 튜토리얼 비디오가 Stata를 어떻게 사용하고 문제를 어떻게 해결해야 하는지 보여줍니다.
선형회귀분석부터,시계열/패널데이터분석,베이지안분석, t검정,도구변수 그리고 엑셀파일을 불러오는 방법까지 다양한 비디오들이 준비되어 있습니다.
또,테이블출력은 언제나 인기 많은 주제 중에 하나입니다. Stata에 대한 모든 비디오 튜토리얼은 아래의 목록에서 각 주제별로 확인할 수 있습니다.
Tour of the Stata 18 interface
PDF documentation in Stata 18
Example datasets included with Stata 18
Overview of what's new in Stata 18
Bayesian model averaging
Causal mediation analysis
Creating and exporting tables of descriptive statistics
Heterogeneous difference in differences
Group sequential designs
Multilevel meta-analysis
Meta-anaysis for prevalence
New features in robust inference for linear models
Wild cluster bootstrap for linear regression
Local projections for impulse–response functions
Flexible demand systems
Time-varying covariates in the interval-censored Cox model
Lasso for Cox proportional hazards models
Relative excess risk due to interaction (RERI)
Instrumental-variables quantile regression
Alias variables across frames
New features in the Data Editor
Stata's new graph scheme
Tour of the Stata 18 interface
PDF documentation in Stata 18
Example datasets included with Stata 18
What it's like–Getting started in Stata
Quick help
Installing community-contributed commands in Stata
Tour of Stata Project Manager
Postestimation Selector
Enhancements to the Do-file Editor
Do-file Editor enhancements in Stata
New features in the Data Editor New
Loading, saving, importing, and exporting data
Importing delimited data
Load a subset of data from a Stata dataset
Import data from SPSS and SAS
Import FRED (Import Federal Reserve Economic Data)
Copy/paste data from Excel into Stata
Import Excel data into Stata
Saving estimation results to Excel
Changing and renaming variables
Convert a string variable to a numeric variable
Convert categorical string variables to labeled numeric variables
Create a categorical variable from a continuous variable
Convert missing value codes to missing values
Frames
Alias variables across datasets New
Working with multiple datasets in memory
Combining data
How to merge files into a single dataset
How to append files into a single dataset
Creating and dropping variables
Create a new variable that is calculated from other variables
Identify and replace unusual data values
Create a date variable from a date stored as a string
Optimize the storage of variables
Round a continuous variable
Stata's Expression Builder
Examining data
New features in the Data Editor New
Identify and remove duplicate observations
Labeling, display formats, and notes
Label variables
Label the values of categorical variables
Change the display format of a variable
Add notes to a variable
Reshaping datasets
Reshape data from wide format to long format
Reshape data from long format to wide format
Strings
Unicode
Tour of long strings and BLOBs
Creating and exporting tables of descriptive statistics New
Customizable tables in Stata
Customizable tables: Crosstabulations
Customizable tables: One-way tables of summary statistics
Customizable tables: Two-way tables of summary statistics
Customizable tables: How to create tables for a regression model
Customizable tables: How to create tables for multiple regression models
Create reproducible reports in Stata
Turning interactive use in Stata into reproducible results
Automatic production of web pages from dynamic Markdown documents
Create PDF reports from within Stata
Create Word documents from within Stata
Create customized Word documents with Stata results and graphs
Create documents with Markdown-formatted text and Stata output
Bayesian econometrics
Bayesian vector autoregressive models
Bayesian dynamic forecasting
Bayesian impulse–response functions and forecast error-variance decompositions
Bayesian dynamic stochastic general equilibrium models
Bayesian panel-data models
Bayesian multilevel modeling
Bayesian analysis: Multiple chains
Bayesian analysis: Predictions
A prefix for Bayesian regression
Bayesian linear regression using the bayes prefix
Bayesian linear regression using the bayes prefix: How to specify custom priors
Bayesian linear regression using the bayes prefix: Checking convergence of the MCMC chain
Bayesian linear regression using the bayes prefix: How to customize the MCMC chain
Bayesian analysis
Graphical user interface for Bayesian analysis
Introduction to Bayesian statistics, part 1: The basic concepts
Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm
Heteroskedastic ordered probit models
Mixed logit models
Poisson with sample selection
Zero-inflated ordered probit
Zero-inflated ordered logit model
Fitting and interpreting regression models: Probit regression with categorical predictors
Fitting and interpreting regression models: Probit regression with continuous predictors
Fitting and interpreting regression models: Probit regression with continuous and categorical predictors
Fitting and interpreting regression models: Multinomial probit regression with categorical predictors
Fitting and interpreting regression models: Multinomial probit regression with continuous predictors
Fitting and interpreting regression models: Multinomial probit regression with continuous and categorical predictors
Fitting and interpreting regression models: Logistic regression with categorical predictors
Fitting and interpreting regression models: Logistic regression with continuous predictors
Fitting and interpreting regression models: Logistic regression with continuous and categorical predictors
Fitting and interpreting regression models: Multinomial logistic regression with categorical predictors
Fitting and interpreting regression models: Multinomial logistic regression with continuous predictors
Fitting and interpreting regression models: Multinomial logistic regression with continuous and categorical predictors
Fitting and interpreting regression models: Poisson regression with categorical predictors
Fitting and interpreting regression models: Poisson regression with continuous predictors
Fitting and interpreting regression models: Poisson regression with continuous and categorical predictors
Logistic regression in Stata, part 1: Binary predictors
Logistic regression in Stata, part 2: Continuous predictors
Logistic regression in Stata, part 3: Factor variables
Regression models for fractional data
Probit regression with categorical covariates
Probit regression with continuous covariates
Probit regression with categorical and continuous covariates
Heterogeneous difference in differences New
Causal mediation analysis New
Introduction to treatment effects in Stata: Part 1
Introduction to treatment effects in Stata: Part 2
Treatment effects: Regression adjustment
Treatment effects: Inverse-probability weighting
Treatment effects: Inverse-probability weighted regression adjustment
Treatment effects: Augmented inverse-probability weighting
Treatment effects: Nearest-neighbor matching
Treatment effects: Propensity-score matching
Treatment-effects estimation using lasso
Difference in differences
Treatment effects for survival models
Endogenous treatment effects
Heterogeneous difference in differences New
Flexible demand systems New
Instrumental-variables quantile regression New
Fixed-effects and random-effects multinomial logit models
Difference in differences
Nonparametric tests for trends
Linearized DSGEs
Nonlinear DSGE models
Heteroskedastic linear regression
Instrumental-variables regression
Mixed logit models
Multilevel tobit and interval regression
Nonparametric regression
Spatial autoregressive models
Extended regression models (ERMs)
Extended regression models, part 1: Endogenous covariates
Extended regression models, part 2: Nonrandom treatment assignment
Extended regression models, part 3: Endogenous sample selection
Extended regression models, part 4: Interpreting the model
Probit regression with categorical covariates
Probit regression with continuous covariates
Probit regression with categorical and continuous covariates
Fitting and interpreting regression models: Multinomial probit regression with categorical predictors
Fitting and interpreting regression models: Multinomial probit regression with continuous predictors
Fitting and interpreting regression models: Multinomial probit regression with continuous and categorical predictors
Causal mediation analysis New
Relative excess risk due to interaction (RERI) New
Time-varying covariates in the interval-censored Cox model New
Lasso for Cox proportional hazards models New
Logistic regression in Stata, part 1: Binary predictors
Logistic regression in Stata, part 2: Continuous predictors
Logistic regression in Stata, part 3: Factor variables
Fitting and interpreting regression models: Logistic regression with categorical predictors
Fitting and interpreting regression models: Logistic regression with continuous predictors
Fitting and interpreting regression models: Logistic regression with continuous and categorical predictors
Odds ratios for case–control data
Stratified analysis of case–control data
Cox proportional hazards model for interval-censored data
Interval-censored survival models
Learn how to set up your data for survival analysis
How to describe and summarize survival data
How to construct life tables
How to calculate incidence rates and incidence-rate ratios for survival data
How to calculate the Kaplan–Meier survivor and Nelson–Aalen cumulative hazard functions
How to graph survival curves
How to test the equality of survivor functions using nonparametric tests
How to fit a Cox proportional hazards model and check proportional-hazards assumption
Multilevel survival analysis
Survival models for SEM
A conceptual introduction to power and sample size
IRT (item response theory) models
Item response theory using Stata: One-parameter logistic (1PL) models
Item response theory using Stata: Two-parameter logistic (2PL) models
Item response theory using Stata: Three-parameter logistic (3PL) models
Item response theory using Stata: Nominal response (NRM) models
Item response theory using Stata: Rating scale (RSM) models
Item response theory using Stata: Graded response (GRM) models
New features in robust inference for linear models New
Wild cluster bootstrap for linear regression New
Fitting and interpreting regression models: Linear regression with categorical predictors
Fitting and interpreting regression models: Linear regression with continuous predictors
Fitting and interpreting regression models: Linear regression with continuous and categorical predictors
Heteroskedastic linear regression
One-way ANOVA
Two-way ANOVA
Analysis of covariance
Simple linear regression
Pearson’s correlation coefficient
Introduction to margins in Stata, part 1: Categorical variables
Introduction to margins in Stata, part 2: Continuous variables
Introduction to margins in Stata, part 3: Interactions
Profile plots and interaction plots in Stata, part 1: A single categorical variable
Profile plots and interaction plots in Stata, part 2: A single continuous variable
Profile plots and interaction plots in Stata, part 3: Interactions of categorical variables
Profile plots and interaction plots in Stata, part 4: Interactions of continuous and categorical variables
Profile plots and interaction plots in Stata, part 5: Interactions of two continuous variables
Nonlinear mixed-effects models with lags and differences
Multilevel tobit and interval regression
Nonlinear mixed-effects models
Introduction to multilevel linear models, part 1
Introduction to multilevel linear models, part 2
Tour of multilevel GLMs
Multilevel models for survey data
Multilevel survival analysis
Small-sample inference for mixed-effects models
Precision and sample-size analysis
Tour of power and sample size
A conceptual introduction to power and sample size
Power and sample-size features added in Stata 14
Sample-size calculation for comparing a sample mean to a reference value
Power calculation for comparing a sample mean to a reference value
Find the minimum detectable effect size for comparing a sample mean to a reference value
Sample-size calculation for comparing a sample proportion to a reference value
Power calculation for comparing a sample proportion to a reference value
Minimum detectable effect size for comparing a sample proportion to a reference value
How to calculate sample size for two independent proportions
How to calculate power for two independent proportions
How to calculate minimum detectable effect size for two independent proportions
Sample-size calculation for comparing sample means from two paired samples
Power calculation for comparing sample means from two paired samples
How to calculate the minimum detectable effect size for comparing the means from two paired samples
Sample-size calculation for one-way analysis of variance
Power calculation for one-way analysis of variance
Minimum detectable effect size for one-way analysis of variance
Power analysis for cluster randomized designs and linear regression
Basic introduction to the analysis of complex survey data
Specifying the design of your survey data
How to download, import, and merge multiple datasets from the NHANES website
How to download, import, and prepare data from the NHANES website
Multilevel models for survey data
Survey data support for SEM
Time-varying covariates in the interval-censored Cox model New
Cox proportional hazards model for interval-censored data
Interval-censored survival models
Learn how to set up your data for survival analysis
How to describe and summarize survival data
How to construct life tables
How to calculate incidence rates and incidence-rate ratios for survival data
How to calculate the Kaplan–Meier survivor and Nelson–Aalen cumulative hazard functions
How to graph survival curves
How to test the equality of survivor functions using nonparametric tests
How to fit a Cox proportional hazards model and check proportional-hazards assumption
Multilevel survival analysis
Panel-data survival models
Survival models for SEM
Treatment effects for survival models
Local projections for impulse–response functions New
Import FRED (Import Federal Reserve Economic Data)
Threshold regression
Tests for multiple breaks in time series
Tour of forecasting
Formatting and managing dates
Time-series operators
Correlograms and partial correlograms
Line graphs and tin()
Introduction to ARMA/ARIMA models
Markov-switching models
Moving-average smoothers
Heterogeneous difference in differences New
Causal mediation analysis New
Introduction to treatment effects in Stata: Part 1
Introduction to treatment effects in Stata: Part 2
Treatment effects: Regression adjustment
Treatment effects: Inverse-probability weighting
Treatment effects: Inverse-probability weighted regression adjustment
Treatment effects: Augmented inverse-probability weighting
Treatment effects: Nearest-neighbor matching
Treatment effects: Propensity-score matching
Treatment-effects estimation using lasso
Difference in differences
Treatment effects for survival models
Endogenous treatment effects